By Topic

A digitally self-calibrated low-noise 7-bit folding A/D converter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Minah Kwon ; Dept. of Semicond. Sci., Dongguk Univ., Seoul, South Korea ; Dahsom Kim ; Daeyun Kim ; Junho Moon
more authors

In this paper, a low noise 65nm 1.2V 7-bit 1GSPS A/D converter with a digitally self-calibrated technique is proposed. The A/D converter is based on a folding-interpolation structure whose folding rate is 2 and its interpolation rate is 8. A digitally self-calibrated technique with a feedback loop and a recursive digital code inspection is described. The circuit reduces the variation of the offset voltage, due to process mismatches, parasitic resistors, and parasitic capacitances. The chip has been fabricated with a 65nm 1-poly 6-metal CMOS technology. The effective chip area is 0.87mm2 and the power consumption is about 110mW with a 1.2V power supply. The measured SNDR is drastically improved in comparison with the same ADC without any calibration.

Published in:

SOC Conference (SOCC), 2010 IEEE International

Date of Conference:

27-29 Sept. 2010