By Topic

Vehicular Congestion Detection and Short-Term Forecasting: A New Model With Results

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Marfia, G. ; Comput. Sci. Dept., Univ. of Bologna, Bologna, Italy ; Roccetti, M.

While vehicular congestion is very often defined in terms of aggregate parameters, such as traffic volume and lane occupancies, based on recent findings, the interpretation that receives most credit is that of a state of a road where traversing vehicles experience a delay exceeding the maximum value typically incurred under light or free-flow traffic conditions. We here propose a new definition according to which a road is in a congested state (be it high or low) only when the likelihood of finding it in the same congested state is high in the near future. Based on this new definition, we devised an algorithm that, exploiting probe vehicles, for any given road 1) identifies if it is congested or not and 2) provides the estimation that a current congested state will last for at least a given time interval. Unlike any other existing approach, an important advantage of ours is that it can generally be applied to any type of road, as it neither needs any a priori knowledge nor requires the estimation of any road parameter (e.g., number of lanes, traffic light cycle, etc.). Further, it allows performing short-term traffic congestion forecasting for any given road. We present several field trials gathered on different urban roads whose empirical results confirm the validity of our approach.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:60 ,  Issue: 7 )