Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Energy-Efficient Variable Stiffness Actuators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Visser, L.C. ; Dept. of Electr. Eng., Univ. of Twente, Enschede, Netherlands ; Carloni, R. ; Stramigioli, S.

Variable stiffness actuators are a particular class of actuators that is characterized by the property that the apparent output stiffness can be changed independent of the output position. To achieve this, variable stiffness actuators consist of a number of elastic elements and a number of actuated degrees of freedom, which determine how the elastic elements are perceived at the actuator output. Changing the apparent output stiffness is useful for a broad range of applications, which explains the increasing research interest in this class of actuators. In this paper, a generic, port-based model for variable stiffness actuators is presented, with which a wide variety of designs can be modeled and analyzed. From the analysis of the model, it is possible to derive kinematic properties that variable stiffness actuator designs should satisfy in order to be energy efficient. More specifically, the kinematics should be such that the apparent output stiffness can be varied without changing the potential energy that is stored in the internal elastic elements. A concept design of an energy-efficient variable stiffness actuator is presented and implemented. Simulations of the model and experiments on the realized prototype validate the design principle.

Published in:

Robotics, IEEE Transactions on  (Volume:27 ,  Issue: 5 )