By Topic

Efficient Analysis of Large Scatterers by Physical Optics Driven Method of Moments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tasic, M.S. ; Sch. of Electr. Eng., Univ. of Belgrade, Belgrade, Serbia ; Kolundzija, B.M.

A new iterative procedure is presented that enables method of moment (MoM) solution of scattered field from electrically large and complex perfectly conducting bodies using significantly reduced number of unknown coefficients. In each iteration the body is excited by a plane wave and by the currents, which are obtained as an approximate solution in the previous iteration. The physical optics (PO) and modified PO techniques are used to determine the PO and the correctional PO currents, which are expressed in terms of original MoM basis functions and grouped into macro-basis functions (MBFs). Weighting coefficients of all MBFs are determined from the condition that mean square value of residuum of original MoM matrix equation is minimized. The iterative procedure finishes when the residuum decreases below the maximum allowed value. The accuracy and efficiency of the proposed method are illustrated on two examples: cube scatterer and airplane scatterer. Since the construction of MBFs by PO and modified PO techniques ensures fast convergence to the original MoM solution, the method is named PO driven MoM.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:59 ,  Issue: 8 )