By Topic

Nanometric AlGaN/GaN HEMT Performance with Implant or Mesa Isolation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Haifeng Sun ; Millimeter-Wave Electron. Group, Eidgenoessische Tech. Hochschule Zurich, Zurich, Switzerland ; Alt, A.R. ; Tirelli, S. ; Marti, D.
more authors

AlGaN/GaN 70-nm-gate high-electron mobility transistors (HEMTs) fabricated using either ion implantation or conventional mesa isolation are compared. Although the resulting devices display comparable dc characteristics, the isolation process influences the RF and pulsed I-V characteristics. Although others have described implant-isolated GaN HEMTs, published reports focused on limited performance metrics, such as the gate leakage current. The present multiparametric study explicitly contrasts the performance of ion-implanted devices to otherwise identical mesa-isolated deep-submicrometer high-speed AlGaN/GaN HEMTs, in terms of transistor cutoff frequencies, small-signal model parameters, microwave noise performance, gate leakage currents, and large-signal pulsed I-V characteristics. We find that implant isolation can bring compelling advantages in terms of bandwidth, microwave noise performance, and tighter parametric distributions.

Published in:

Electron Device Letters, IEEE  (Volume:32 ,  Issue: 8 )