By Topic

Novel Interpolation and Polynomial Selection for Low-Complexity Chase Soft-Decision Reed-Solomon Decoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xinmiao Zhang ; Case Western Reserve Univ., Cleveland, OH, USA ; Yingquan Wu ; Jiangli Zhu ; Yu Zheng

Algebraic soft-decision decoding (ASD) of Reed-Solomon (RS) codes can achieve substantial coding gain with polynomial complexity. Particularly, the low-complexity Chase (LCC) ASD decoding has better performance-complexity tradeoff. In the LCC decoding, 2η test vectors need to be interpolated over, and a polynomial selection scheme needs to be employed to select one interpolation output to send to the rest decoding steps. The interpolation and polynomial selection can account for a significant part of the LCC decoder area, especially in the case of long RS codes and large η . In this paper, simplifications are first proposed for a low-complexity polynomial selection scheme. Then a novel interpolation scheme is developed by making use of the simplified polynomial selection. Instead of interpolating over each vector, our scheme first generates information necessary for the polynomial selection. Then only the selected vectors are interpolated over. The proposed interpolation and polynomial selection schemes can lead to 162% higher efficiency in terms of throughput-over-area ratio for an example LCC decoder with η = 8 for a (458, 410) RS code over GF(210).

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:20 ,  Issue: 7 )