By Topic

An Energy-Efficient Biomedical Signal Processing Platform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kwong, J. ; Texas Instrum., Inc., Dallas, TX, USA ; Chandrakasan, A.P.

This paper presents an energy-efficient processing platform for wearable sensor nodes, designed to support diverse biological signals and algorithms. The platform features a 0.5 V-1.0 V 16-bit microcontroller, SRAM, and accelerators for biomedical signal processing. Voltage scaling and block-level power gating allow optimizing energy efficiency under applications of varying complexity. Programmable accelerators support numerous usage scenarios and perform signal processing tasks at 133 to 215× lower energy than the general-purpose CPU. When running complete EEG and EKG applications using both CPU and accelerators, the platform achieves 10.2× and 11.5× energy reduction respectively compared to CPU-only implementations.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:46 ,  Issue: 7 )