By Topic

Dynamic QoS-Based Bandwidth Allocation Framework for Broadband Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Esmailpour, A. ; Dept. of Electr. & Comput. Eng., Univ. of Toronto, Toronto, ON, Canada ; Nasser, N.

Broadband wireless communication systems, namely, Worldwide Interoperability for Microwave Access (WiMAX) and Long-Term Evolution (LTE), promise to revolutionize the mobile users wireless experience by offering many of the services and features promised by fourth-generation (4G) wireless systems, such as supporting multimedia services with high data rates and wide coverage area, as well as all-Internet Protocol (IP) with security and quality-of-service (QoS) support. These systems, however, require proficient radio resource management (RRM) schemes to provide the aforementioned features they promise. In this paper, we propose a new framework, which is called dynamic QoS-based bandwidth allocation (DQBA), to support heterogeneous traffic with different QoS requirements in WiMAX networks. The DQBA framework operates as such; it dynamically changes the bandwidth allocation (BA) for ongoing and new arrival connections based on traffic characteristics and service demand. The DQBA aims at maximizing the system capacity by efficiently utilizing its resources and by being fair, practical, and in compliance with the IEEE 802.16 standard specifications. To achieve its objectives, DQBA employs a flexible architecture that combines the following related components: 1) a two-level packet scheduler scheme; 2) an efficient call admission control policy; and 3) a dynamic BA mechanism. Simulation results and comparisons with existing schemes show the effectiveness and strengths of the DQBA framework in delivering promising QoS and being fair to all classes of services in a WiMAX network.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:60 ,  Issue: 6 )