By Topic

Deep space science downlinks via optical communication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Robert J. Daddato ; HSO-GS, European Space Agency / ESA-ESOC, Darmstadt, Germany ; Klaus-Jürgen Schulz ; Igor Zayer

By the year 2025 the European Space Agency plans to be operating a number of currently studied or planned scientific missions which will place satellites in orbits around the Moon, the Earth-Sun Lagrange points, and Mars and Jupiter. Initial studies are underway to determine the feasibility of providing optical communications systems for dedicated science data channels with the objective to improve upon the present workhorse radio frequency link bandwidths by an order of magnitude within similar mass, power, and size limitations. The target is to provide 100 Mbps channel bandwidth from a distance of 1 AU with a global communication link availability of >; 95%.

Published in:

Space Optical Systems and Applications (ICSOS), 2011 International Conference on

Date of Conference:

11-13 May 2011