By Topic

Complementary Cooperation Algorithm Based on DEKF Combined With Pattern Recognition for SOC/Capacity Estimation and SOH Prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jonghoon Kim ; Sch. of Electr. Eng. & Comput. Sci., Seoul Nat. Univ., Seoul, South Korea ; Seongjun Lee ; Cho, B.H.

Differences in electrochemical characteristics among Li-ion batteries result in erroneous state-of-charge (SOC)/capacity estimation and state-of-health (SOH) prediction when using the existing dual extended Kalman filter (DEKF) algorithm. This paper presents a complementary cooperation algorithm based on DEKF combined with pattern recognition as an application Hamming neural network to the identification of suitable battery model parameters for improved SOC/capacity estimation and SOH prediction. Two kinds of pattern such as discharging/charging voltage pattern (DCVP) and capacity pattern (CP) were measured, together with the battery parameters, as representative patterns. Through statistical analysis, the Hamming network is applied for identification of the representative DCVP and CP that most closely matche that of the arbitrary battery to be measured. The model parameters of the representative battery are then applied for SOC/capacity estimation and SOH prediction of the arbitrary battery using the DEKF. This avoids the need for repeated parameter measurement.

Published in:

Power Electronics, IEEE Transactions on  (Volume:27 ,  Issue: 1 )