Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Optical-Cavity-Based Multiwavelength Sensor for Spectral Discrimination and Object Position Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Venkataraayan, K. ; Electron Sci. Res. Inst., Edith Cowan Univ., Perth, WA, Australia ; Askraba, S. ; Alameh, K.E. ; Smith, C.L.

An optical-cavity-based multiwavelength sensor is developed for object discrimination and position finding. The working principle of this device employs the multiple laser beam triangulation method to determine object position in addition to its ability to recognize them. The multiwavelength sensor employs five different identically polarized and overlapped laser light beams that are sequentially pulsed and launched through a custom-made curved optical cavity to generate multiple laser spots for each laser. The intensities of the reflected light beams from the different spots are detected by a high-speed area scan image sensor. The discrimination between five different objects, namely, brick, cement sheet, roof tile, cotton, and leather is accomplished by calculating the slopes of the objects' reflectance spectra at the employed wavelengths. The object position (coordinates) are determined using the triangulation method, which is based on the projection of laser spots along determined angles on the objects and the measurements of the objects' reflectance spectra using an image sensor. Experimental results demonstrate the ability of the multiwavelength spectral reflectance sensor to simultaneously discriminate between different objects and predict their positions over a 6 m range with an accuracy exceeding 92%.

Published in:

Lightwave Technology, Journal of  (Volume:29 ,  Issue: 16 )