Cart (Loading....) | Create Account
Close category search window

Nonresonant feeding of photonic crystal nanocavity modes by quantum dots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Laucht, A. ; Walter Schottky Institut, Technische Universität München, Am Coulombwall 3, 85748 Garching, Germany ; Hauke, N. ; Neumann, A. ; Gunthner, T.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We experimentally probe the nonresonant feeding of photons into the optical mode of a two dimensional photonic crystal nanocavity from the discrete emission from a quantum dot. For a strongly coupled system of a single exciton and the cavity mode, we track the detuning-dependent photoluminescence intensity of the exciton-polariton peaks at different lattice temperatures. At low temperatures we observe a clear asymmetry in the emission intensity depending on whether the exciton is at higher or lower energy than the cavity mode. At high temperatures this asymmetry vanishes when the probabilities to emit or absorb a phonon become similar. For a different dot-cavity system where the cavity mode is detuned by ΔE>5 meV to lower energy than the single exciton transitions emission from the mode remains correlated with the quantum dot as demonstrated unambiguously by cross-correlation photon counting experiments. By monitoring the temporal evolution of the photoluminescence spectrum, we show that feeding of photons into the mode occurs from multi-exciton transitions. We observe a clear anti-correlation of the mode and single exciton emission; the mode emission quenches as the population in the system reduces toward the single exciton level while the intensity of the mode emission tracks the multi-exciton transitions.

Published in:

Journal of Applied Physics  (Volume:109 ,  Issue: 10 )

Date of Publication:

May 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.