By Topic

Nonresonant feeding of photonic crystal nanocavity modes by quantum dots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
12 Author(s)
Laucht, A. ; Walter Schottky Institut, Technische Universität München, Am Coulombwall 3, 85748 Garching, Germany ; Hauke, N. ; Neumann, A. ; Gunthner, T.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3576137 

We experimentally probe the nonresonant feeding of photons into the optical mode of a two dimensional photonic crystal nanocavity from the discrete emission from a quantum dot. For a strongly coupled system of a single exciton and the cavity mode, we track the detuning-dependent photoluminescence intensity of the exciton-polariton peaks at different lattice temperatures. At low temperatures we observe a clear asymmetry in the emission intensity depending on whether the exciton is at higher or lower energy than the cavity mode. At high temperatures this asymmetry vanishes when the probabilities to emit or absorb a phonon become similar. For a different dot-cavity system where the cavity mode is detuned by ΔE>5 meV to lower energy than the single exciton transitions emission from the mode remains correlated with the quantum dot as demonstrated unambiguously by cross-correlation photon counting experiments. By monitoring the temporal evolution of the photoluminescence spectrum, we show that feeding of photons into the mode occurs from multi-exciton transitions. We observe a clear anti-correlation of the mode and single exciton emission; the mode emission quenches as the population in the system reduces toward the single exciton level while the intensity of the mode emission tracks the multi-exciton transitions.

Published in:

Journal of Applied Physics  (Volume:109 ,  Issue: 10 )