By Topic

All-Optical 2R Regeneration With a Vertical Microcavity-Based Saturable Absorber

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Bramerie, L. ; Lab. Foton, Univ. Eur. de Bretagne, Lannion, France ; Quang Trung Le ; Gay, M. ; O'Hare, A.
more authors

This paper gives an overview of recent demonstrations of optical 2R regeneration achieved by vertical microcavity mirror-based multiple-quantum-well saturable absorber (SA). The potential of the device to perform wavelength division multiplexing regeneration is first demonstrated through the first pigtailed SA chip implemented with eight independent fibers using a cost effective coupling technique. The cascadability and wavelength tunability assessment of this module associated with a power limiter fiber-based function has been experimentally demonstrated at 42.6 Gbit/s. Because this method of power limiting is not a suitable solution for all-optical multichannel 2R regeneration, a new SA structure allowing a power limiting function was proposed. We describe and characterize such a structure in this paper. This new SA opens the door to a complete passive all-optical 2R regeneration relying upon a single technology, as shown in this paper through the use of two SA: SA.0 for extinction ratio enhancement and SA.1 for high-power level equalization allowing receiver sensitivity (up to 3.5 dB) and Q-factor (up to 1.4 dB) improvement for a RZ signal at 42.6 Gbit/s. The limitation of SA.1 when the regenerator must be cascaded a large number of times is also described, leading to the observation that SA.1 should be more suitable for phase encoded formats that are more spectrally efficient than ON-OFF keying formats. A SA.1 used as a phase-preserving amplitude regenerator in a 42.6 Gbit/s RZ differential quadrature phase-shift keying transmission system is, therefore, assessed . A fiber launched power margin of 2 dB and a receiver sensitivity improvement of 5.5 dB are obtained. Finally, we use, for the first time an SA.1 as a phase-preserving amplitude regenerator of RZ differential quadrature phase-shift keying signals. The regenerator is assessed in a recirculating loop at 28 Gbaud. The system tolerance to nonlinear phase noise is enhanced by 3 dB and the distance improvem- nt factor was 1.3 for a bit error rate = 10-4.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:18 ,  Issue: 2 )