By Topic

Impacts of intrinsic device variations on the stability of FinFET subthreshold SRAMs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Chen, Yin-Nien ; Dept. of Electron. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Chien-Yu Hsieh ; Ming-Long Fan ; Hu, V.P.-H.
more authors

In this work, we investigate the impacts of intrinsic device variations on FinFET subthreshold SRAMs, including the conventional tied-gate 6T SRAM, tied-gate 10T Schmitt Trigger based SRAMs, and recently proposed independent-gate controlled 8T Schmitt Trigger based SRAMs. The impacts of intrinsic random device variations, including Fin Line-Edge Roughness (LER) and Work Function Variation (WFV), on the device threshold voltage Vth, Subthreshold Swing (S.S.) and stability of FinFET SRAMs operating in subthreshold region are assessed using 3D atomistic mixed-mode Monte-Carlo simulations. The results indicate that Fin LER is the dominant factor limiting the stability of FinFET subthreshold SRAMs, since Fin LER degrades both Vth fluctuation and S.S., while WFV mainly affects only Vth fluctuation. The independent-gate controlled Schmitt Trigger SRAMs are shown to offer adequate stability for the intended subthreshold applications even considering intrinsic device variations.

Published in:

IC Design & Technology (ICICDT), 2011 IEEE International Conference on

Date of Conference:

2-4 May 2011