Cart (Loading....) | Create Account
Close category search window
 

UDSM Trends Comparison: From Technology Roadmap to UltraSparc Niagara2

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pulimeno, A. ; Dipt. di Elettron., Politec. di Torino, Torino, Italy ; Graziano, M. ; Piccinini, G.

The increased leakage, yield inefficiency, process, power supply, and temperature variations have significant aftereffects on the performance of complex VLSI architectures especially if mapped on ultra deep sub micrometer (UDSM) technologies. In this paper we assess the technology trend based on three industrial technologies (90, 65, and 45 nm) using a state of the art processor as benchmark: The UltraSparc Niagara 2 from SUN Microsystem. We analyze frequency, dynamic, and static power and area after synthesis varying power supply voltage and temperature. We then compare these exhaustive analyses of system level performance as a function of technology to ITRS device level estimations. The results suggest that this prediction can be of help when addressing both the technological scaling and the variability scenario of the selected technology. We believe that correctly predicting specific values on performance variations when realistic conditions and technologies are changed could provide a valuable information for the architect. Our analysis advises the designer on the effective applicability of the ITRS trends to system performance, but also pinpoints that a reliable system level prediction should better take into account the design complexity.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:20 ,  Issue: 7 )

Date of Publication:

July 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.