By Topic

Coherent All-Optical Phase and Amplitude Regenerator of Binary Phase-Encoded Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Radan Slavík ; Optoelectronics Research Centre , University of Southampton, Highfield Campus, Southampton, U.K. ; Adonis Bogris ; Francesca Parmigiani ; Joseph Kakande
more authors

The performance of future ultralong-haul communication systems exploiting phase-encoded signals is likely to be compromised by nonlinear phase noise generated during signal transmission. One potential way to mitigate against nonlinear phase noise is to use phase-sensitive amplifiers (PSAs) that have been demonstrated to help remove such phase noise as well as to provide simultaneous signal amplitude noise suppression when operated in saturation. Recently, we have shown that a PSA-based signal regenerator based on degenerate four-wave mixing could be implemented in a network-compatible manner in which only the (noisy) signal is present at the device input (black-box operation). However, this scheme was tested only with relatively high-frequency deterministic perturbations applied to the signal. Here, we address both theoretically and experimentally the important issue of how such a regenerator works with more realistic random broadband amplitude/phase noise distributions. Good regenerative performance is demonstrated and our study also illustrates an additional unique feature of PSA-based regenerators-namely error correction for differentially encoded signals when placed in front of a DPSK receiver. Furthermore, we present a simplified regenerator implementation providing highly stable operation and representing a significant further step toward a practical device.

Published in:

IEEE Journal of Selected Topics in Quantum Electronics  (Volume:18 ,  Issue: 2 )