By Topic

Early Stage Breast Cancer Detection through Mammographic Feature Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Muhammad Asad ; FET, Int. Islamic Univ., Islamabad, Pakistan ; Naeem Zafar Azeemi ; Muhammad Faisal Zafar ; S. A. Naqvi

Breast cancer is the second leading cause of cancer amongst women. Mammography plays a very important role in early stage detection of breast cancer. Computer aided design (CAD) systems are used to assist radiologists in better classification of tumor in a mammograph as benign or malignant. For early stage detection of breast cancer CAD systems require features extracted from mammographs. A new feature-set was formed involving six preexisting and one devised feature. Thirty-three images from Mini-mias database were selected for this study. The cases included 16 circumscribed benign, 4 circumscribed malignant, 9 speculated benign, and 5 speculated malignant lesions. The features were trained using Kohnan neural networks. Results show 80% classification rate.

Published in:

Bioinformatics and Biomedical Engineering, (iCBBE) 2011 5th International Conference on

Date of Conference:

10-12 May 2011