By Topic

Sleep Apnea Detection from ECG Signal: Analysis on Optimal Features, Principal Components, and Nonlinearity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sani M. Isa ; Fac. of Comput. Sci., Univ. of Indonesia, Depok, Indonesia ; Mohamad Ivan Fanany ; Wisnu Jatmiko ; Aniati Murni Arymurthy

This paper describes implementation of Principal Component Analysis (PCA) on sleep apnea detection using Electrocardiogram (ECG) signal. The statistics of RR-intervals per epoch with 1 minute duration were used as an input. The combination of features proposed by Chazal and Yilmaz was transformed into orthogonal features using PCA. Cross validation, random sampling, and test on train data were used on model selection. The results of classification using kNN, Na-ive Bayes, and Support Vector Machine (SVM) show that PCA features give better classification accuracy compared to Chazal and Yilmaz features. SVM with RBF (Radial Basis Function) kernel gives the best classification accuracy by using 7 principal components (PC) as a features. The experimental results show that relation between Chazal features with target class tend to be linear, but Yilmaz and PCA features are non-linear.

Published in:

Bioinformatics and Biomedical Engineering, (iCBBE) 2011 5th International Conference on

Date of Conference:

10-12 May 2011