Cart (Loading....) | Create Account
Close category search window

Simulation of near-field optical manipulator using the combination of a near-field scanning optical microscope probe and an atomic force microscope metallic probe

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liu, Binghui ; State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China ; Lijun Yang ; Wang, Yang

Your organization might have access to this article on the publisher's site. To check, click on this link: 

We propose a physical model to calculate the trapping force on a nanoparticle trapped by the system using the combination of a near-field scanning optical microscope (NSOM) probe and an atomic force microscope (AFM) metallic probe. Such a near-field trap is produced by evanescent illumination from the NSOM probe and light scattering at the tip of the AFM metallic probe. By using the Maxwell stress tensor through the electric field distribution obtained with the three-dimensional finite difference time domain (3-D FDTD) method, the dependence of the trapping force on the system parameters is discussed, and trapping properties including near-field distribution, trapping position, and the role of other forces versus trapping force are revealed. The results indicate that a particle down to tens of nanometers in size can be trapped toward the tip of an AFM probe with a lower laser intensity (∼1040 W/mm2) than that required by conventional optical manipulators (∼105 W/mm2).

Published in:

Journal of Applied Physics  (Volume:109 ,  Issue: 10 )

Date of Publication:

May 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.