By Topic

Human Object Inpainting Using Manifold Learning-Based Posture Sequence Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chih-Hung Ling ; Dept. of Comput. Sci., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Yu-Ming Liang ; Lin, Chia-Wen ; Yong-Sheng Chen
more authors

We propose a human object inpainting scheme that divides the process into three steps: 1) human posture synthesis; 2) graphical model construction; and 3) posture sequence estimation. Human posture synthesis is used to enrich the number of postures in the database, after which all the postures are used to build a graphical model that can estimate the motion tendency of an object. We also introduce two constraints to confine the motion continuity property. The first constraint limits the maximum search distance if a trajectory in the graphical model is discontinuous, and the second confines the search direction in order to maintain the tendency of an object's motion. We perform both forward and backward predictions to derive local optimal solutions. Then, to compute an overall best solution, we apply the Markov random field model and take the potential trajectory with the maximum total probability as the final result. The proposed posture sequence estimation model can help identify a set of suitable postures from the posture database to restore damaged/missing postures. It can also make a reconstructed motion sequence look continuous.

Published in:

Image Processing, IEEE Transactions on  (Volume:20 ,  Issue: 11 )