By Topic

An Augmented Lagrangian Method for Total Variation Video Restoration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Stanley H. Chan ; Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA ; Ramsin Khoshabeh ; Kristofor B. Gibson ; Philip E. Gill
more authors

This paper presents a fast algorithm for restoring video sequences. The proposed algorithm, as opposed to existing methods, does not consider video restoration as a sequence of image restoration problems. Rather, it treats a video sequence as a space-time volume and poses a space-time total variation regularization to enhance the smoothness of the solution. The optimization problem is solved by transforming the original unconstrained minimization problem to an equivalent constrained minimization problem. An augmented Lagrangian method is used to handle the constraints, and an alternating direction method is used to iteratively find solutions to the subproblems. The proposed algorithm has a wide range of applications, including video deblurring and denoising, video disparity refinement, and hot-air turbulence effect reduction.

Published in:

IEEE Transactions on Image Processing  (Volume:20 ,  Issue: 11 )