By Topic

Hierarchical Least Squares Identification for Linear SISO Systems With Dual-Rate Sampled-Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jie Ding ; Key Lab. of Adv. Process Control for Light Ind., Jiangnan Univ., Wuxi, China ; Feng Ding ; Liu, X.P. ; Guangjun Liu

This technical note studies identification problems for dual-rate sampled-data linear systems with noises. A hierarchical least squares (HLS) identification algorithm is presented to estimate the parameters of the dual-rate ARMAX models. The basic idea is to decompose the identification model of a dual-rate system into several sub-identification models with smaller dimensions and fewer parameters. The proposed algorithm is more computationally efficient than the recursive least squares (RLS) algorithm since the RLS algorithm requires computing the covariance matrix of large sizes, while the HLS algorithm deals with the covariance matrix of small sizes. Compared with our previous work, a detailed study of the HLS algorithm is conducted in this technical note. The performance analysis and simulation results confirm that the estimation accuracy of the proposed algorithm are close to that of the RLS algorithm, but the proposed algorithm retains much less computational burden.

Published in:

Automatic Control, IEEE Transactions on  (Volume:56 ,  Issue: 11 )