By Topic

Empirical modeling of a solar-powered energy harvesting wireless sensor node for time-slotted operation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lee, P. ; Networking Protocols Dept., A*STAR, Singapore, Singapore ; Zhi Ang Eu ; Mingding Han ; Tan, H.

Energy harvesting wireless sensor networks (EH-WSNs) are gaining importance in smart homes, environmental monitoring, health care and transportation systems, since they enable much longer operation time as energy can be replenished through energy harvesting. This is unlike sensor nodes that use non-rechargeable batteries which need to be replaced once energy is depleted. However, the sporadic availability of ambient energy makes the design of networking protocols and predicting network performance very challenging. In this paper, we perform an empirical energy characterization of a time-slotted solar energy harvesting node with different system and environmental parameters. We use six different statistical models (uniform distribution, geometric distribution, transformed geometric distribution, Poisson distribution, transformed Poisson distribution and a Markovian model) to fit the empirical datasets. Our results show that there is no single statistical model that can fit all the datasets, thus justifying the need to use empirical data to validate the theoretical analysis of time-slotted MAC protocols for EH-WSNs.

Published in:

Wireless Communications and Networking Conference (WCNC), 2011 IEEE

Date of Conference:

28-31 March 2011