Cart (Loading....) | Create Account
Close category search window

Low Complexity Design of Ripple Carry and Brent–Kung Adders in QCA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pudi, V. ; Dept. of Electr. Eng., Indian Inst. of Technol. Madras, Chennai, India ; Sridharan, K.

The design of adders on quantum dot cellular automata (QCA) has been of recent interest. While few designs exist, investigations on reduction of QCA primitives (majority gates and inverters) for various adders are limited. In this paper, we present a number of new results on majority logic. We use these results to present efficient QCA designs for the ripple carry adder (RCA) and various prefix adders. We derive bounds on the number of majority gates for -bit RCA and -bit Brent-Kung, Kogge-Stone, Ladner-Fischer, and Han-Carlson adders. We further show that the Brent-Kung adder has lower delay than the best existing adder designs as well as other prefix adders. In addition, signal integrity and robustness studies show that the proposed Brent-Kung adder is fairly well-suited to changes in time-related parameters as well as temperature. Detailed simulations using QCADesigner are presented.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:11 ,  Issue: 1 )

Date of Publication:

Jan. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.