By Topic

Cooperative Layered Video Multicast Using Randomized Distributed Space Time Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Alay, O. ; Dept. of Electr. & Comput. Eng., Polytech. Inst. of NYU, Brooklyn, NY, USA ; Pei Liu ; Yao Wang ; Erkip, E.
more authors

With the increased popularity of mobile multimedia services, efficient and robust video multicast strategies are of critical importance. Cooperative communications has been shown to improve the robustness and the data rates for point-to-point transmission. In this paper, a two-hop cooperative transmission scheme for multicast in infrastructure-based networks is used, where multiple relays forward the data simultaneously using randomized distributed space time codes (RDSTC). This randomized cooperative transmission is further integrated with layered video coding and packet level forward error correction (FEC) to enable efficient and robust video multicast. Three different schemes are proposed to find the system operating parameters based on the availability of the channel information at the source station: RDSTC with full channel information, RDSTC with limited channel information, and RDSTC with node count. The performance of these three schemes are compared with rate adaptive direct transmission and conventional multicast that does not use rate adaptation. The results show that while rate-adaptive direct transmission provides better video quality than conventional multicast, all three proposed randomized cooperative schemes outperform both strategies significantly as long as the network has enough nodes. Furthermore, the performance gap between RDSTC with full channel information and RDSTC with limited channel information or node count is relatively small, indicating the robustness of the proposed cooperative multicast system using RDSTC.

Published in:

Multimedia, IEEE Transactions on  (Volume:13 ,  Issue: 5 )