By Topic

Adaptive feature extraction of four-class motor imagery EEG based on best basis of wavelet packet and CSP

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Li Ming-Ai ; Coll. of Electron. Inf. & Control Eng., Beijing Univ. of Technol., Beijing, China ; Lin Lin ; Yang Jin-Fu

This paper investigated the feature extraction of multi-channel four-class motor imagery for electroencephalogram(EEG) . A new method which can adaptively extract features on the basis of the best wavelet package basis is proposed to solve the problem such as the low classification accuracy and weak self-adaptation. The traditional distance criterion is optimized which is under the condition that the criteria is additive for the choice of the best wavelet packet basis. And the frequency information is filtered by OVR-CSP algorithm to improve the separability of the feature information in frequency subbands. Simulation results demonstrate that the proposed approach achieve better performance than other common methods.

Published in:

Electric Information and Control Engineering (ICEICE), 2011 International Conference on

Date of Conference:

15-17 April 2011