By Topic

In vitro comminution of model renal calculi using histotripsy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Duryea, A.P. ; Dept. of Biomed. Eng., Univ. of Michigan, Ann Arbor, MI, USA ; Maxwell, A.D. ; Roberts, W.W. ; Zhen Xu
more authors

Shock wave lithotripsy (SWL) suffers from the fact that it can produce residual stone fragments of significant size (>;2 mm). Mechanistically, cavitation has been shown to play an important role in the reduction of such fragments to smaller debris. In this study, we assessed the feasibility of using cavitationally-based pulsed ultrasound therapy (histotripsy) to erode kidney stones. Previous work has shown that histotripsy is capable of mechanically fractionating soft tissue into fine, acellular debris. Here, we investigated the potential for translating this technology to renal calculi through the use of a commonly accepted stone model. Stone models were sonicated using a 1-MHz focused transducer, with 5-cycle pulses delivered at a rate of 1 kHz. Pulses having peak negative pressures ranging from 3 to 21 MPa were tested. Results indicate that histotripsy is capable of effectively eroding the stone model, achieving an average stone erosion rate of 26 mg/min at maximum treatment pressure; substantial stone erosion was only observed in the presence of a dense cavitational bubble cloud. Sequential sieving of residual stone fragments indicated that debris produced by histotripsy was smaller than 100 μm in size, and treatment monitoring showed that both the cavitational bubble cloud and model stone appear as hyperechoic regions on B-mode imaging. These preliminary results indicate that histotripsy shows promise in its use for stone comminution, and an optimized erosion process may provide a potential adjunct to conventional SWL procedures.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:58 ,  Issue: 5 )