By Topic

Pipelined Parallel FFT Architectures via Folding Transformation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ayinala, M. ; Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Brown, M. ; Parhi, K.K.

This paper presents a novel approach to develop parallel pipelined architectures for the fast Fourier transform (FFT). A formal procedure for designing FFT architectures using folding transformation and register minimization techniques is proposed. Novel parallel-pipelined architectures for the computation of complex and real valued fast Fourier transform are derived. For complex valued Fourier transform (CFFT), the proposed architecture takes advantage of under utilized hardware in the serial architecture to derive L-parallel architectures without increasing the hardware complexity by a factor of L. The operating frequency of the proposed architecture can be decreased which in turn reduces the power consumption. Further, this paper presents new parallel-pipelined architectures for the computation of real-valued fast Fourier transform (RFFT). The proposed architectures exploit redundancy in the computation of FFT samples to reduce the hardware complexity. A comparison is drawn between the proposed designs and the previous architectures. The power consumption can be reduced up to 37% and 50% in 2-parallel CFFT and RFFT architectures, respectively. The output samples are obtained in a scrambled order in the proposed architectures. Circuits to reorder these scrambled output sequences to a desired order are presented.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:20 ,  Issue: 6 )