Cart (Loading....) | Create Account
Close category search window
 

Distributed Resource Allocation for Cognitive Radio Networks With Spectrum-Sharing Constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Duy Trong Ngo ; Dept. of Electr. & Comput. Eng., McGill Univ., Montréal, QC, Canada ; Le-Ngoc, Tho

This paper presents new design formulations that aim at optimizing the performance of an orthogonal frequency-division multiple-access (OFDMA) ad hoc cognitive radio network through joint subcarrier assignment and power allocation. Aside from an important constraint on the tolerable interference induced to primary networks, to efficiently implement spectrum-sharing control within the unlicensed network, the optimization problems considered here strictly enforce upper and lower bounds on the total amount of temporarily available bandwidth that is granted to individual secondary users. These new requirements are of particular relevance in cognitive radio settings, where the spectral activities of primary users are highly dynamic, leaving little opportunity for secondary access. A dual decomposition framework is then developed for two criteria (throughput maximization and power minimization), which gives rise to the realization of distributed solutions. Because the proposed distributed protocols require very limited cooperation among the participating network elements, they are particularly applicable to ad hoc cognitive networks, where centralized processing and control are certainly inaccessible. In this paper, we recommend that the network collaboration is made possible through the implementation of virtual timers at individual secondary users and through the exchange of pertinent information over a common reserved channel. It is shown that not only is the computational complexity of the devised algorithms affordable but that the performance of these algorithms in practical scenarios attains the actual global optimum as well. The potential of the proposed approaches is thoroughly verified by asymptotic complexity analysis and numerical results.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:60 ,  Issue: 7 )

Date of Publication:

Sept. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.