By Topic

Analysis and Compensation of the Effects of Analog VLSI Arithmetic on the LMS Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Carvajal, G. ; Dept. of Electr. Eng., Univ. de Concepcion, Concepcion, Chile ; Figueroa, M. ; Sbarbaro, D. ; Valenzuela, W.

Analog very large scale integration implementations of neural networks can compute using a fraction of the size and power required by their digital counterparts. However, intrinsic limitations of analog hardware, such as device mismatch, charge leakage, and noise, reduce the accuracy of analog arithmetic circuits, degrading the performance of large-scale adaptive systems. In this paper, we present a detailed mathematical analysis that relates different parameters of the hardware limitations to specific effects on the convergence properties of linear perceptrons trained with the least-mean-square (LMS) algorithm. Using this analysis, we derive design guidelines and introduce simple on-chip calibration techniques to improve the accuracy of analog neural networks with a small cost in die area and power dissipation. We validate our analysis by evaluating the performance of a mixed-signal complementary metal-oxide-semiconductor implementation of a 32-input perceptron trained with LMS.

Published in:

Neural Networks, IEEE Transactions on  (Volume:22 ,  Issue: 7 )