Cart (Loading....) | Create Account
Close category search window
 

Automatic Skin Lesion Segmentation via Iterative Stochastic Region Merging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wong, A. ; Dept. of Syst. Design Eng., Univ. of Waterloo, Waterloo, ON, Canada ; Scharcanski, J. ; Fieguth, P.

An automatic method for segmenting skin lesions in conventional macroscopic images is presented. The images are acquired with conventional cameras, without the use of a dermoscope. Automatic segmentation of skin lesions from macroscopic images is a very challenging problem due to factors such as illumination variations, irregular structural and color variations, the presence of hair, as well as the occurrence of multiple unhealthy skin regions. To address these factors, a novel iterative stochastic region-merging approach is employed to segment the regions corresponding to skin lesions from the macroscopic images, where stochastic region merging is initialized first on a pixel level, and subsequently on a region level until convergence. A region merging likelihood function based on the regional statistics is introduced to determine the merger of regions in a stochastic manner. Experimental results show that the proposed system achieves overall segmentation error of under 10% for skin lesions in macroscopic images, which is lower than that achieved by existing methods.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:15 ,  Issue: 6 )

Date of Publication:

Nov. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.