By Topic

Trends in Submicrometer InP-Based HBT Architecture Targeting Thermal Management

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Brice Grandchamp ; Université de Bordeaux, Integration du Matériau au Système, Centre National de la Recherche Scientifique, Unités Mixtes de Recherche 5218, Talence, France ; Virginie Nodjiadjim ; Mohammed Zaknoune ; Gilles A. Kone
more authors

More than ever, thermal management in InP-based heterojunction bipolar transistors (HBTs) is a critical issue since high junction temperature degrades transport properties and device reliability. This paper presents investigation results on the impact of device architecture enhancements aimed at reducing thermal resistance using alternative substrates or passivation materials or metallic collectors or all of them. Using 3-D scalable technology computer-aided design electrothermal simulations, the impact of these features is quantified. This prospective work is based on calibration measurements performed on InP bulk HBTs with various InGaAs subcollector thickness values. A wafer-bonded Si-substrate, a 25-nm-thin InGaAs subcollector, and SiN passivation are the key technological features that reduce the thermal resistance by 70%. An even more aggressive thermal management architecture using metallic collectors reduces the thermal resistance up to 80%.

Published in:

IEEE Transactions on Electron Devices  (Volume:58 ,  Issue: 8 )