By Topic

Lasing Directionality and Polarization Behavior in Continuous-Wave Ring Raman Lasers Based on Micro- and Nano-Scale Silicon Waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Nathalie Vermeulen ; Brussels Photonics Team (B-PHOT) Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Brussel, Belgium

A generic model is introduced to describe the lasing characteristics of continuous-wave circular and racetrack-shaped ring Raman lasers based on micro- and nano-scale silicon waveguides. This model explicitly takes into account the effective Raman gain values for forward and backward lasing in the ring resonator, the presence of a bus waveguide in which the Stokes laser radiation coupled out from the ring undergoes additional Raman amplification, and the spatial gain variations for different polarization states in the ring structure. I show numerically that ring lasers based on micro-scale waveguides generate unidirectional lasing in either the forward or backward direction because of an asymmetry in nonlinear losses, whereas those based on nanowires yield only backward lasing due to a non-reciprocity in effective gain. Furthermore, the model indicates that backward lasing can yield a significantly higher Stokes output at the bus waveguide facets than lasing in the forward direction. Finally, considering a TE-polarized pump input for a (100) grown silicon ring Raman laser, I demonstrate numerically that the polarization state of the Stokes lasing radiation strongly depends on whether micro-scale or nano-scale waveguides are used.

Published in:

Journal of Lightwave Technology  (Volume:29 ,  Issue: 14 )