Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Tunable Single-Polarization Single-Mode Microstructured Polymer Optical Fiber

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Espinel, Y.A.V. ; Inst. of Phys., State Univ. of Campinas, Sao Paulo, Brazil ; Franco, M.A.R. ; Cordeiro, C.M.B.

A new procedure to obtain single-polarization single-mode polymeric optical fibers is reported. The selective polarization confinement loss mechanism is obtained by applying external hydrostatic pressure in a specially designed side-hole microstructured polymer optical fiber. It is shown that, at λ = 588 nm, pressure around 380 bar allows inducing confinement loss as high as 35 dB/m for one polarization state while the other is guided with low loss (3 ×10-3 dB/m). The loss mechanism is shown to be related to coupling between the fundamental core modes and the cladding modes of the pressurized fiber. Finally, the possibility of tuning the single-polarization single-mode state with the input wavelength with fixed pressure or by introducing small changes in the inner ring of holes of the fiber cross section is presented.

Published in:

Lightwave Technology, Journal of  (Volume:29 ,  Issue: 16 )