By Topic

Variable rate vector quantization for medical image compression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Riskin, E.A. ; Inf. Syst. Lab., Stanford Univ., CA, USA ; Lookabaugh, T. ; Chou, P.A. ; Gray, R.M.

Three techniques for variable-rate vector quantizer design are applied to medical images. The first two are extensions of an algorithm for optimal pruning in tree-structured classification and regression due to Breiman et al. The code design algorithms find subtrees of a given tree-structured vector quantizer (TSVQ), each one optimal in that it has the lowest average distortion of all subtrees of the TSVQ with the same or lesser average rate. Since the resulting subtrees have variable depth, natural variable-rate coders result. The third technique is a joint optimization of a vector quantizer and a noiseless variable-rate code. This technique is relatively complex but it has the potential to yield the highest performance of all three techniques

Published in:

Medical Imaging, IEEE Transactions on  (Volume:9 ,  Issue: 3 )