Cart (Loading....) | Create Account
Close category search window

Hand motion detection from EMG signals by using ANN based classifier for human computer interaction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ahsan, M.R. ; Dept. of Electr. & Comput. Eng., Int. Islamic Univ. Malaysia, Kuala Lumpur, Malaysia ; Ibrahimy, M.I. ; Khalifa, O.O.

Today's advanced muscular sensing and processing technologies have made the acquisition of electromyography (EMG) signal which is valuable. EMG signal is the measurement of electrical potentials generated by muscle cells which is an indicator of muscle activity. Other than rehabilitation engineering and clinical applications, EMG signals can also be employed in the field of human computer interaction (HCI) system. In this work, the detection of different hand movements (left, right, up and down) was obtained using artificial neural network (ANN). A back-propagation (BP) network with Levenberg-Marquardt training algorithm was utilized. The conventional time and time-frequency based feature sets have been chosen to train the neural network. The simulation results show that the designed network is able to recognize hand movements with satisfied classification efficiency in average of 88.4%.

Published in:

Modeling, Simulation and Applied Optimization (ICMSAO), 2011 4th International Conference on

Date of Conference:

19-21 April 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.