By Topic

Design and evaluation of a 4×4 MIMO-OFDM transceiver for gigabit indoor wireless communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pei-Yun Tsai ; Dept. of Electr. Eng., Nat. Central Univ., Jhungli, Taiwan ; Ze-Mu Chang ; Zheng-Yu Huang ; Wen-Ji Jau

This paper presents a MIMO-OFDM baseband transceiver design for indoor gigabit wireless communication systems. The proposed system uses 5 GHz carrier frequency with bandwidth up to 160 MHz. Both the transmitter and the receiver support 4 antennas. At the receiver, we design symbol timing detector, carrier frequency offset first acquisition and subsequent tracking mechanisms, channel estimation and MIMO detection. Simulation results show that the proposed symbol timing detection algorithm is more precise than the conventional algorithm. The CFO tracking mechanism also helps to improve the severe degradation in MIMO detection due to the residual synchronization error. In addition, by exploiting low-correlated spatial diversity, this system can combat highly frequency-selective fading channels for wide-band applications. We thus achieve satisfying system performance with 64-QAM constellation for 2.6-Gbps transmission rate.

Published in:

Circuits and Systems (APCCAS), 2010 IEEE Asia Pacific Conference on

Date of Conference:

6-9 Dec. 2010