By Topic

FPGA-based architectures of finite radon transform for medical image de-noising

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Afandi Ahmad ; Department of Computer Engineering, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), P. O. Box 101, 86400 Batu Pahat, Johor, Malaysia ; Abbes Amira ; Hassan Rabah ; Yves Berviller

This paper presents the design and implementation of finite Radon transform (FRAT) on field programmable gate array (FPGA). To improve the implementation time, Xilinx AccelDSP, a software for generating hardware description language (HDL) from a high-level MATLAB description has been used. FPGA-based architectures with three design strategies have been proposed: direct implementation of pseudo-code with a sequential or pipelined description, and block random access memory (BRAM)-based approach. Various medical images modalities have been deployed for both software simulation and hardware implementation. An analysis on the image de-noising using the FRAT is addressed and demonstrates a promising capability for medical image de-noising. Moreover, the impact of different block sizes on reconstructed images has been analysed. Furthermore, performance analysis in terms of area, maximum frequency and throughput is presented and reveals a significant achievement.

Published in:

Circuits and Systems (APCCAS), 2010 IEEE Asia Pacific Conference on

Date of Conference:

6-9 Dec. 2010