By Topic

Comparison between difference-frequency generation and parametric fluorescence in quasi-phase-matched lithium niobate stripe waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Baldi, P. ; Lab. de Phys. de la Matiere Condensee, Univ. de Nice-Sophia Antipolis, Valbonne, France ; Sundheimer, M. ; El Hadi, K. ; De Micheli, M.P.
more authors

Tuning curves and gain are two relevant parameters for integrated optical parametric oscillators. We show in this paper that they can be determined with a good precision without building a high-finesse cavity by measurement of the optical parametric fluorescence and difference-frequency generation. In the first part of this paper, we compare theoretically the guided optical parametric fluorescence and the guided difference-frequency generation in the quasi-phase matching configuration. In the second part, we compare experimental results on optical parametric fluorescence in the 1.2-2.2-μm region and optical difference-frequency generation from a 1.55-μm laser diode using a pump wavelength between 775-795 nm in quasi-phase-matched lithium niobate stripe waveguides. This comparison shows that the gain measured by both methods is identical, but, while parametric fluorescence allows us to obtain the quasi-phase-matching curve, the difference-frequency generation gives a simpler and more accurate measurement of the gain. The combination of these two techniques provides therefore a powerful tool for evaluating the different fabrication processes of the nonlinear waveguides, without actually fabricating a parametric oscillator

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:2 ,  Issue: 2 )