By Topic

Differential Evolution as Applied to Electromagnetics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rocca, P. ; Dept. of Inf. Eng. & Comput. Sci., Univ. of Trento, Trento, Italy ; Oliveri, G. ; Massa, A.

In electromagnetics, optimization problems generally require high computational resources and involve a large number of unknowns. They are usually characterized by non-convex functionals and continuous spaces suitable for strategies based on Differential Evolution (DE). In such a framework, this paper is aimed at presenting an overview of Differential Evolution-based approaches used in electromagnetics, pointing out novelties and customizations with respect to other fields of application. Starting from a general description of the evolutionary mechanism of Differential Evolution, Differential Evolution-based techniques for electromagnetic optimization are presented. Some hints on the convergence properties and the sensitivity to control parameters are also given. Finally, a comprehensive coverage of different Differential Evolution formulations in solving optimization problems in the area of computational electromagnetics is presented, focusing on antenna synthesis and inverse scattering.

Published in:

Antennas and Propagation Magazine, IEEE  (Volume:53 ,  Issue: 1 )