Cart (Loading....) | Create Account
Close category search window
 

Automatic Aneurysm Neck Detection Using Surface Voronoi Diagrams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Cardenes, R. ; Center for Comput. Imaging & Simulation Technol. in Biomed. (CISTIB), Univ. Pompeu Fabra, Barcelona, Spain ; Pozo, J.M. ; Bogunovic, H. ; Larrabide, I.
more authors

A new automatic approach for saccular intracranial aneurysm isolation is proposed in this work. Due to the inter- and intra-observer variability in manual delineation of the aneurysm neck, a definition based on a minimum cost path around the aneurysm sac is proposed that copes with this variability and is able to make consistent measurements along different data sets, as well as to automate and speedup the analysis of cerebral aneurysms. The method is based on the computation of a minimal path along a scalar field obtained on the vessel surface, to find the aneurysm neck in a robust and fast manner. The computation of the scalar field on the surface is obtained using a fast marching approach with a speed function based on the exponential of the distance from the centerline bifurcation between the aneurysm dome and the parent vessels. In order to assure a correct topology of the aneurysm sac, the neck computation is constrained to a region defined by a surface Voronoi diagram obtained from the branches of the vessel centerline. We validate this method comparing our results in 26 real cases with manual aneurysm isolation obtained using a cut-plane, and also with results obtained using manual delineations from three different observers by comparing typical morphological measures.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:30 ,  Issue: 10 )

Date of Publication:

Oct. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.