By Topic

Efficient Decentralized Approximation via Selective Gossip

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Deniz Ustebay ; Electrical and Computer Engineering Department, McGill University, Montréal, Canada ; Rui Castro ; Michael Rabbat

Recently, gossip algorithms have received much attention from the wireless sensor network community due to their simplicity, scalability and robustness. Motivated by applications such as compression and distributed transform coding, we propose a new gossip algorithm called Selective Gossip. Unlike traditional randomized gossip which computes the average of scalar values, we run gossip algorithms in parallel on the elements of a vector. The goal is to compute only the entries which are above a defined threshold in magnitude, i.e., significant entries. Nodes adaptively approximate the significant entries while abstaining from calculating the insignificant ones. Consequently, network lifetime and bandwidth are preserved. We show that with the proposed algorithm nodes reach consensus on the values of the significant entries and on the indices of insignificant ones. We illustrate the performance of our algorithm with a field estimation application. For regular topologies, selective gossip computes an approximation of the field using the wavelet transform. For irregular network topologies, we construct an orthonormal transform basis using eigenvectors of the graph Laplacian. Using two real sensor network datasets we show substantial communication savings over randomized gossip. We also propose a decentralized adaptive threshold mechanism such that nodes estimate the threshold while approximating the entries of the vector for computing the best m -term approximation of the data.

Published in:

IEEE Journal of Selected Topics in Signal Processing  (Volume:5 ,  Issue: 4 )