By Topic

Polarity-Coincidence-Array Based Spectrum Sensing for Multiple Antenna Cognitive Radios in the Presence of Non-Gaussian Noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wimalajeewa, T. ; Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., Syracuse, NY, USA ; Varshney, P.K.

One of the main requirements of cognitive radio (CR) systems is the ability to perform spectrum sensing in a reliable manner in challenging environments that arise due to propagation channels which undergo multipath fading and non-Gaussian noise. While most existing literature on spectrum sensing has focused on impairments introduced by additive white Gaussian noise (AWGN), this assumption fails to model the behavior of certain types of noise found in practice. In this paper, the use of a non-parametric and easily implementable detection device, namely the polarity-coincidence-array (PCA) detector, is proposed for the detection of weak primary signals with a cognitive radio equipped with multiple antennas. Its performance is evaluated in the presence of heavy-tailed noise. The detector performance in terms of the probabilities of detection and false alarm is derived when the communication channels between the primary user transmitter and the multiple antennas at the cognitive radio are AWGN as well as when they undergo Rayleigh fading. From the numerical results, it is observed that a significant performance enhancement is achieved by the PCA detector compared to that of the energy detector with AWGN as well as fading channels as the heaviness of the tail of the non-Gaussian noise increases.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:10 ,  Issue: 7 )