Cart (Loading....) | Create Account
Close category search window

Design of a Gaze-Sensitive Virtual Social Interactive System for Children With Autism

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lahiri, Uttama ; Mech. Eng. Dept., Vanderbilt Univ., Nashville, TN, USA ; Warren, Z. ; Sarkar, N.

Impairments in social communication skills are thought to be core deficits in children with autism spectrum disorder (ASD). In recent years, several assistive technologies, particularly Virtual Reality (VR), have been investigated to promote social interactions in this population. It is well known that children with ASD demonstrate atypical viewing patterns during social interactions and thus monitoring eye-gaze can be valuable to design intervention strategies. While several studies have used eye-tracking technology to monitor eye-gaze for offline analysis, there exists no real-time system that can monitor eye-gaze dynamically and provide individualized feedback. Given the promise of VR-based social interaction and the usefulness of monitoring eye-gaze in real-time, a novel VR-based dynamic eye-tracking system is developed in this work. This system, called Virtual Interactive system with Gaze-sensitive Adaptive Response Technology (VIGART), is capable of delivering individualized feedback based on a child's dynamic gaze patterns during VR-based interaction. Results from a usability study with six adolescents with ASD are presented that examines the acceptability and usefulness of VIGART. The results in terms of improvement in behavioral viewing and changes in relevant eye physiological indexes of participants while interacting with VIGART indicate the potential of this novel technology.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:19 ,  Issue: 4 )

Date of Publication:

Aug. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.