Cart (Loading....) | Create Account
Close category search window
 

Finding the Maximizers of the Information Divergence From an Exponential Family

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Rauh, J. ; Max Planck Inst. for Math. in the Sci., Leipzig, Germany

This paper investigates maximizers of the information divergence from an exponential family ε. It is shown that the rI -projection of a maximizer P to ε is a convex combination of P and a probability measure P- with disjoint support and the same value of the sufficient statistics A. This observation can be used to transform the original problem of maximizing D(·∥ε) over the set of all probability measures into the maximization of a function D̅r over a convex subset of ker A. The global maximizers of both problems correspond to each other. Furthermore, finding all local maximizers of D̅r yields all local maximizers of D(·∥E). This paper also proposes two algorithms to find the maximizers of D̅r and applies them to two examples, where the maximizers of D(·∥ε) were not known before.

Published in:

Information Theory, IEEE Transactions on  (Volume:57 ,  Issue: 6 )

Date of Publication:

June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.