By Topic

On the Growth Rate of the Weight Distribution of Irregular Doubly Generalized LDPC Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mark F. Flanagan ; School of Electrical, Electronic and Mechanical Engineering, University College Dublin, Dublin, Ireland ; Enrico Paolini ; Marco Chiani ; Marc P. C. Fossorier

In this paper, the asymptotic growth rate of the weight distribution of irregular doubly generalized LDPC (D-GLDPC) codes is derived. The analysis yields a compact expression which accurately approximates the growth rate function for the case of small linear-weight codewords. This paper generalizes existing results for LDPC and generalized LDPC (GLDPC) codes. Ensembles with smallest check or variable node minimum distance greater than 2 are shown to have good growth-rate behavior, while for other ensembles a fundamental parameter is identified which discriminates between an asymptotically small and an asymptotically large expected number of small linear-weight codewords. Also, in the latter case it is shown that the growth rate depends only on the check and variable nodes with minimum distance 2. An important connection between this new result and the stability condition of D-GLDPC codes over the BEC is highlighted. Such a connection, previously observed for LDPC and GLDPC codes, is now extended to the case of D-GLDPC codes. Finally, it is shown that the analysis may be extended to include the growth rate of the stopping set size distribution of irregular D-GLDPC codes.

Published in:

IEEE Transactions on Information Theory  (Volume:57 ,  Issue: 6 )