By Topic

Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Oraevsky, A.A. ; Dept. of Electr. & Comput. Eng., Rice Univ., Houston, TX, USA ; Da Silva, L.B. ; Rubenchik, Alexander M. ; Feit, Michael D.
more authors

Plasma mediated ablation of collagen gels and porcine cornea was studied at various laser pulse durations in the range of 1 ns-300 fs at 1053-nm wavelength. It was found that pulsed laser ablation of transparent and weakly absorbing gels is always mediated by plasma. On the other hand, ablation of strongly absorbing tissues is mediated by plasma in the ultrashort-pulse range only. Ablation threshold along with plasma optical breakdown threshold decreases with increasing tissue absorbance for subnanosecond pulses. In contrast, the ablation threshold was found to be practically independent of tissue linear absorption for femtosecond laser pulses. The mechanism of optical breakdown at the tissue surface was theoretically investigated. In the nanosecond range of laser pulse duration, optical breakdown proceeds via avalanche ionization initiated by heating of electrons contributed by strongly absorbing impurities at the tissue surface. In the ultrashortpulse range, optical breakdown is initiated by multiphoton ionization of the irradiated medium (six photons in case of tissue irradiated at 1053-nm wavelength), and is less sensitive to linear absorption. High-quality ablation craters with no thermal or mechanical damage to surrounding material were obtained with subpicosecond laser pulses. Experimental results suggest that subpicosecond plasma mediated ablation can be employed as a tool for precise laser microsurgery of various tissues

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:2 ,  Issue: 4 )