By Topic

Selectable and Unselectable Sets of Neurons in Recurrent Neural Networks With Saturated Piecewise Linear Transfer Function

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lei Zhang ; College of Computer Science, Sichuan University, Chengdu, China ; Zhang Yi

The concepts of selectable and unselectable sets are proposed to describe some interesting dynamical properties of a class of recurrent neural networks (RNNs) with saturated piecewise linear transfer function. A set of neurons is said to be selectable if it can be co-unsaturated at a stable equilibrium point by some external input. A set of neurons is said to be unselectable if it is not selectable, i.e., such set of neurons can never be co-unsaturated at any stable equilibrium point regardless of what the input is. The importance of such concepts is that they enable a new perspective of the memory in RNNs. Necessary and sufficient conditions for the existence of selectable and unselectable sets of neurons are obtained. As an application, the problem of group selection is discussed by using such concepts. It shows that, under some conditions, each group is a selectable set, and each selectable set is contained in some group. Thus, groups are indicated by selectable sets of the RNNs and can be selected by external inputs. Simulations are carried out to further illustrate the theory.

Published in:

IEEE Transactions on Neural Networks  (Volume:22 ,  Issue: 7 )