By Topic

Improvement of Matrix Converter Drive Reliability by Online Fault Detection and a Fault-Tolerant Switching Strategy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Nguyen-Duy, K. ; Taipei, Nat. Taiwan Univ. of Sci. & Technol., Taipei, Taiwan ; Tian-Hua Liu ; Der-Fa Chen ; Hung, J.Y.

The matrix converter system is becoming a very promising candidate to replace the conventional two-stage ac/dc/ac converter, but system reliability remains an open issue. The most common reliability problem is that a bidirectional switch has an open-switch fault during operation. In this paper, a matrix converter driving a speed-controlled permanent-magnet synchronous motor is examined under a single open-switch fault. First, a new fault-detection method is proposed using only the motor currents. Second, a novel fault-tolerant switching strategy is presented. By treating the matrix converter as a two-stage rectifier/inverter, existing modulation techniques for the inverter stage can be reused, whereas the rectifier stage is modified by control to counteract the fault. However, the proposed techniques require no additional hardware devices or circuit modifications to the matrix converter. Experimental results show that the proposed method can maintain the motor speed with a maximum ripple of 2%-a fivefold improvement over the uncompensated system. The proposed method therefore offers a very economical and effective solution for the matrix converter fault tolerance problem.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:59 ,  Issue: 1 )