By Topic

Extended Lie Brackets for Nonlinear Time-Delay Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Claudia Califano ; Dip. di Inform. e Sistemistica “Antonio Ruberti”, Università di Roma “La Sapienza”, Rome, Italy ; Luis Alejandro Marquez-Martinez ; Claude H. Moog

In this note the Extended Lie bracket operator is introduced for the analysis and control of nonlinear time-delay systems (NLTDS). This tool is used to characterize the integrability conditions of a given submodule. The obtained results have two fundamental outcomes. First, they define the necessary and sufficient conditions under which a given set of nonlinear one-forms in the n-dimensional delayed variables x(t),...,x(t-sD) , with D constant but unknown, are integrable, thus generalizing the well known fundamental Frobenius Theorem to delay systems. Secondly, they set the basis for the extension to this context of the geometric approach used for delay-free systems. The effectiveness of the results is shown by solving the problem of the equivalence of a NLTDS to an accessible Linear Time-Delay System (LTDS) by bicausal change of coordinates.

Published in:

IEEE Transactions on Automatic Control  (Volume:56 ,  Issue: 9 )